Логика для всех. От пиратов до мудрецов - Страница 45


К оглавлению

45

Комментарий. Строго излагать это решение удобно с помощью метода математической индукции. При этом в качестве базы индукции достаточно решить задачу о двух гусарах и двух вопросах.

Д48. Если бы на голове первого мудреца был белый колпак, то второй бы догадался, что на его голове черный колпак. Поэтому на голове первого черный колпак.

Д49. Третий мудрец видит два черных колпака и не знает, черный на нем колпак или белый. Поэтому он ответит «Не знаю». Если бы на втором мудреце был белый колпак, то третий все равно не смог бы определить цвет своего колпака. Поэтому второй мудрец тоже ответит «Не знаю». А третий подумает так: «Если на мне и на втором белые колпаки, то третий бы определил цвет своего колпака. Второй это понимает не хуже меня. Поэтому если на мне белый, а на втором черный, то по ответу третьего «Не знаю» второй бы определил цвет своего колпака. А раз они оба сказали «Не знаю», на мне черный колпак. Итак, первый скажет: «На мне черный колпак».

Ответ. Третий и второй скажут «Не знаю». Первый скажет «На мне черный колпак».

Комментарий. Условие этой задачи слегка отличается от условия задачи 10.4: не все мудрецы видят друг друга. Но это не влияет ни на решение, ни на ответ.

Д50. 1) Так как мудрецов десять, а колпаков каждого цвета по три, колпаки всех четырех цветов на кого-то надеты. Поэтому если последний мудрец не видит перед собой никого в желтом колпаке, он ответит: «На мне желтый». А если он этого не скажет, то все поймут, что он видел перед собой кого-то в желтом колпаке. Если предпоследний мудрец не увидит никого перед собой в желтом колпаке, то он догадается, что желтый колпак на нем. А если он не скажет «На мне желтый колпак», все поймут, что он тоже видел перед собой кого-то в желтом колпаке. Первый из мудрецов, перед которым нет никого в желтом колпаке (и который не слышал ни от кого слов «На мне желтый колпак»), поймет, что желтый колпак как раз на нем.

2) Как показано в предыдущем пункте, как минимум один мудрец определит, что на нем желтый колпак, как минимум один – что на нем красный колпак, как минимум один – синий и как минимум один – зеленый.

Замечание. При «удачных» расстановках смогут назвать цвет своего колпака более четырех мудрецов. В частности, если два колпака какого-то цвета спрятаны, а третий надет на самого последнего мудреца, то он сможет определить цвет своего колпака. Отсюда остальные мудрецы догадаются, что этого цвета больше ни на ком нет, поэтому определить цвет своего колпака сможет каждый.

Д51. Подсказка. Рассмотрите сначала случаи попроще: белых колпаков не принесли совсем, принесли только один, только два и т. д.

Решение. Вместо одной задачи решим целую цепочку задач, начиная с совсем простых:

Задача 0. Если бы белых колпаков не было, то каждый мудрец смог бы определить, что на нем черный колпак.

Задача 1. Если белый колпак один, то первый мудрец ответить бы не смог, а остальные сказали бы, что на них черные колпаки, подумав так: если бы на мне был белый колпак, то первый бы его видел и смог бы понять, что на нем черный колпак (так как он умеет решать задачу 0), но он промолчал.

Задача 2. Если белых колпаков два, то первый мудрец, конечно же, промолчал бы. Второй бы подумал: независимо от цвета моего колпака остались еще и черные, и белые, поэтому первый мудрец в любом случае промолчал бы, и я тоже ничего не могу определить. Третий бы подумал: если бы на мне был белый колпак, то второй бы понимал, что белый остался только один и определил бы цвет своего колпака (так как задачу 1 он решать умеет), поэтому на мне черный колпак. Так же подумали бы и остальные и назвали бы цвета своих колпаков.

Задача 3. Если белых колпаков три, то цвет своего колпака смог бы определить четвертый мудрец (и все последующие). Ведь если бы на нем был белый колпак, то третьему мудрецу пришлось бы решать задачу 2, а это он делать умеет. Раз третий промолчал, четвертому все ясно.

Рассуждая аналогично, приходим к выводу, что определить цвет своего колпака смогут все мудрецы, начиная с одиннадцатого.

Более строго решение может быть изложено с помощью метода математической индукции.

Д52. Решим для начала более простую задачу. Пусть есть только 3 красных и 2 синих колпака, мудрецов всего трое, и султан надел на головы первому и второму мудрецам красные колпаки, а третьему – синий. Через одну минуту никто не выйдет, после чего первый мудрец подумает: «Если на мне синий колпак, то второй видит два синих колпака и понимает, что на нем красный. Почему же он не вышел? Потому что на мне красный колпак!» Аналогично сможет на второй минуте определить цвет своего колпака и второй мудрец. Третий мудрец ничего понять пока не сможет: если на нем был бы красный колпак, то каждый из двух остальных на первом шаге видел два красных колпака и все равно не мог бы ничего определить. Но за третью минуту он поймет: раз другие мудрецы раньше меня догадались о цвете своих колпаков, они видели не то же самое, что и я. Я видел два красных колпака, а они – красный и синий. Итак, на мне синий колпак».

Вернемся к нашей задаче. Перенумеруем мудрецов: у первого, второго и третьего белые колпаки, у четвертого и пятого красные и у шестого – синий. Если бы на первом был синий колпак, то через одну минуту все бы оставались на местах, а на второй минуте второй мудрец подумал бы: «Я вижу оба синих колпака. Если на мне красный, то третий мудрец видит все красные и все синие колпаки и должен был сразу понять, что на нем белый (здесь тонкость, разберемся позже). Почему же он не вышел? Потому что на мне белый колпак!»

45