Логика для всех. От пиратов до мудрецов - Страница 8


К оглавлению

8

А: Некоторым Мишиным одноклассникам 12 лет.

Б: Всем Мишиным одноклассникам 12 лет.

Можно ли, ничего не зная про Мишу, утверждать, что:

1) если верно А, то верно и Б;

2) если верно Б, то верно и А?

Обсуждение. Если бы речь шла об одном конкретном Мише, вопрос был бы неинтересен. Например, Миша учится в шестом классе, у него двадцать одноклассников и всем им по 12 лет; тогда оба высказывания, А и Б, истинны. Однако в задаче требуется понять, может ли для какого-нибудь Миши первое высказывание оказаться верным, а второе нет (т. е. возможен ли контрпример).

Решение. 1) Нельзя. Контрпример очевиден: пусть у Миши 5 (или любое другое натуральное число) одноклассников, которым двенадцать лет, и 20 (или любое другое натуральное число) тринадцатилетних одноклассников. Тогда А истинно, а Б ложно.

2) Как ни странно, тоже нельзя! Для построения контрпримера предположим, что Мише три года, и никаких одноклассников у него вообще нет. Верно ли утверждение Б? Верно! Кто не согласен, пусть предъявит контрпример – Мишиного одноклассника другого возраста. А утверждение А, означающее, что существует хотя бы один Мишин двенадцатилетний одноклассник, неверно.


Задачи для самостоятельного решения

Задача 3.5. Землянин Вася сказал: «Все марсиане лжецы». Прав ли Вася?

Задача 3.6. Есть 30 гирек, которые весят 1 г, 2 г, 3 г, …, 30 г. Можно ли разложить их: 1) на две кучки одинакового веса; 2) на три кучки одинакового веса?

Задача 3.7. 1) Можно ли заполнить таблицу 3x3 натуральными числами так, чтобы сумма чисел в каждой строке была четным числом, а в каждом столбце – нечетным? 2) А таблицу 4x4?

Задача 3.8. Верно ли, что периметр любого четырехугольника, целиком находящегося внутри данного квадрата, меньше периметра этого квадрата?

Задача 3.9. Верно ли, что все числа вида 2 + 15, где n – натуральное число, простые?

Задача 3.10. Рассмотрим натуральные числа, в записи которых нет нулей.

1) Найдется ли среди них десятизначное число, делящееся на сумму своих цифр?

2) А стозначное?

Задача 3.11. 1) Какие из высказываний А – Д означают одно и то же?

2) Будем считать высказывание А истинным. Какие из других высказываний в таком случае наверняка истинны?

А: Дед Мороз – волшебник.

Б: Существует хотя бы один дед-волшебник.

В: Существует ровно один дед-волшебник.

Г: Некоторые деды – волшебники.

Д: Некоторые волшебники – деды.

Задача 3.12*. Найдите ошибку в рассуждениях.

«Рассмотрим три высказывания:

А: Существует хотя бы один дед-волшебник.

Б: Дед Мороз – волшебник.

В: Все деды – волшебники.

Можно ли утверждать, что если верно В, то верно и А? Нет: контрпримером является ситуация, когда множество дедов пусто (аналогично задаче про Мишиных одноклассников).

С другой стороны, если верно В, то верно и Б (иначе Дед Мороз служил бы контрпримером к высказыванию В). Но если верно Б, то верно и А (для доказательства существования достаточно привести пример, в данном случае Дед Мороз – пример). Итак, если верно В, то верно и А».

Задача 3.13 Прокомментируйте доказательство существования Деда Мороза, изложенное в виде диалога двух логиков.

Первый: «Если я не ошибаюсь, Дед Мороз существует».

Второй: «Разумеется, Дед Мороз существует, если вы не ошибаетесь».

Первый: «Следовательно, мое утверждение истинно». Второй: «Разумеется!»

Первый: «Итак, я не ошибся, а вы согласились с тем что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует».

Занятие 4
Пиратская логика, или Высказывания с союзами «и», «или»


Пираты!
Ни пуха, ни пера!
Юлий Ким

На этом занятии кружковцы научатся строить отрицания к высказываниям с союзами «и» и «или». На нем продолжается работа с понятием отрицания и законом исключенного третьего, а также с кругами Эйлера в качестве иллюстраций. Появляются таблицы истинности, которые пригодятся на пятом занятии. Однако при желании его можно с минимальными изменениями провести и независимо от других занятий книжки, поскольку уровень сложности рассчитан на начинающих.



Но вот парадокс: дети сравнительно легко справляются с предложенными задачами. Если кто-то ошибся, он быстро исправляется. Но через некоторое время многие ошибутся в аналогичном месте. Почему?

Как указано в предисловии, основные трудности учащиеся испытывают там, где формальный смысл высказывания отличается от разговорной практики. Одно из таких отличий связано с тем, что если два простых предложения объединить союзом «и» в сложносочиненное, смысл сказанного на бытовом уровне не изменится. Какая, казалось бы, разница, как сказать: «Беня врун. И Веня врун» или «Беня и Веня оба вруны»? Если это говорит правдивый человек, действительно, никакой. А вот если лгун – разница есть (см. задачу 4.8). Другое отличие связано с разделительным и неразделительным пониманием союза «или» и описано в замечаниях между задачами 4.2 и 4.3 и в задаче 4.4. Чтобы такого рода трудности преодолеть, недостаточно сообщить таблицу истинности и решить одну задачу. Для большинства учащихся и одного занятия будет недостаточно. Рекомендуем руководителю кружка часть предложенных здесь задач оставить «на потом». Для закрепления можно брать дополнительные задачи, а можно и придумывать в необходимом количестве задачи, аналогичные задачам 4.2, 4.3, 4.6.


Четыре молодых пирата, Арчи, Бен, Вилли и Глен, зарыли на острове клад. Каждый запомнил место: от старой пальмы 100 футов на восток, потом 100 футов на север. Через много лет четыре старых пирата вернулись на остров за кладом. Как ни странно, старая пальма до сих пор уцелела! Впрочем, то, что до сих пор уцелели все четыре морских разбойника, следует признать еще более странным. Правда, несоблюдение режима дня и злоупотребление спиртными напитками не лучшим образом сказались на их памяти. И если стороны света настоящий пират не перепутает до самой смерти, то вот с числами дело обстояло куда хуже. Вот что думал каждый пират про место расположения клада:

8