Второй способ: посмотрим на иллюстрации высказываний А ⇒ Б, Б ⇒ АиА⇔Бс помощью кругов Эйлера.
1) Область истинности высказывания А⇔Б входит целиком в области истинности высказываний А ⇒ Б и Б ⇒ А.
2) Область истинности высказывания А ⇒ Б частично входит в область истинности высказывания А ⇔ Б, а частично находится за ее пределами. 3) В той области, где высказывание А ⇒ Б ложно, высказывание А ⇔ Б тоже ложно.
Третий способ пригоден только для пункта 2 и опирается на приведение конкретных примеров высказываний (например, из задач 5.2 (п. 1) и 5.2 (п. 2)). А вот то, что мы не можем подобрать всевозможных подходящих примеров в пунктах 1 и 3, еще не доказывает, что таких примеров и вовсе нет.
Задача 8.2. Бабушка печет пирог в те и только те дни, когда ждет гостей.
1) Бабушка печет пирог. Можно ли утверждать, что она сегодня ждет гостей?
2) Бабушка не печет пирог. Можно ли утверждать, что сегодня она не ждет гостей?
Ответ. 1) Да; 2) да.
Решение. Рассмотрим два высказывания. А: «Бабушка сегодня печет пирог», Б: «Бабушка сегодня ждет гостей». Тогда условие означает А⇔Б. В предыдущей задаче получено, что тогда истинно и А ⇒ Б, откуда ясен ответ в пункте 1. Кроме того, истинно и Б ⇒ А. А значит, и «не А» ⇒ «не Б», что мы и используем для доказательства от противного в пункте 2.
Задача 8.3. Равносильны ли высказывания А и Б? Если нет, то следует ли хотя бы одно из них из другого?
1) А: «Некоторые принцессы – красавицы»; Б: «Некоторые красавицы – принцессы».
2) А: «Все принцессы – красавицы»; Б: «Все красавицы – принцессы».
3) А: «Число N кратно 11»; Б: «Сумма цифр числа А, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах».
4) А: «Число N является квадратом натурального числа»; Б: «У числа N нечетное число делителей».
5) А: «У любой девочки из 6 „А“ больше друзей среди одноклассников, чем у любого мальчика из 6 „А“ среди одноклассниц»; Б: «В 6 „А“ мальчиков больше, чем девочек».
Ответ. 1) Равносильны; 2) нет; 3) нет, но Б ⇒ А; 4) равносильны; 5) нет, но А ⇒ Б.
Решение. Пункты 1 и 2 уже обсуждались в задачах 2.3 и 2.11.
3) Утверждение А ⇒ Б следует из признака делимости на 11; обратное неверно, например, 803 кратно 11, но суммы цифр на четных и нечетных местах не равны друг другу.
4) Объединим делители числа N в пары так, чтобы произведение двух чисел в паре равнялось N. Ясно, что N = n равносильно существованию числа п, которое является парным самому себе, при этом число делителей нечетно.
5) Поставим в соответствие каждому шестикласснику количество его друзей противоположного пола. Сумма этих чисел у всех девочек такая же, как и у всех мальчиков, и равна количеству дружб между мальчиком и девочкой. Так как все слагаемые для девочек больше, чем для мальчиков, у мальчиков должно быть больше слагаемых. Поэтому А ⇒ Б. Обратное неверно, для доказательства достаточно любого контрпримера. Например, в классе одна девочка и два мальчика, и никто из них ни с кем не дружит.
Задача 8.4. Чтобы доказать равносильность двух утверждений А и Б, необходимо доказать две теоремы: А ⇒ Б и Б ⇒ А. А какое наименьшее число теорем надо доказать, чтобы убедиться в равносильности: а) трех утверждений;
б) десяти утверждений?
Ответ, а) Три; б) десять.
Решение. Чтобы доказать, что из любого утверждения следует любое другое, достаточно получить их друг из друга по кругу (для трех утверждений А ⇒ Б ⇒ В ⇒ А, для десяти аналогично), при этом число теорем равно числу утверждений.
С другой стороны, теорем не может получиться меньше, чем утверждений. Действительно, для каждого утверждения должна быть теорема, где оно стоит справа от знака «⇒», иначе оно ни из чего не следует.
Доказательство по кругу не всегда оказывается самым удобным. Иногда доказывают не минимальное количество теорем, а больше, зато каждая из них достаточно проста. Убедимся в этом, решив следующую задачу.
Задача 8.5*. В лифте многоэтажного дома работают только две кнопки: одна поднимает лифт на х этажей, вторая опускает на у этажей (если это возможно при данном положении лифта), где натуральные числа х и у меньше количества этажей в доме. Рассмотрим три утверждения:
(1) С любого этажа можно попасть на любой другой.
(2) С любого этажа, кроме последнего, можно подняться на следующий.
(3) С любого этажа, кроме первого, можно спуститься на предыдущий.
1) Покажите, что в зависимости от значений х и у каждое утверждение может быть как верным, так и неверным.
2) Между какими из этих утверждений можно поставить знак следствия и получить верное высказывание? Есть ли среди данных трех утверждений равносильные?
Решение. 1) При х = у = 1 все утверждения верны, при х = у = 2 неверны, так как нельзя поменять четность этажа.
2) Очевидно, что (1) ⇒ (2), (1) ⇒ (3). Кроме того, из одновременной истинности (2) и (3) следует (1). Докажем, что (2) ⇒ (3). Пусть лифт находится на n-м этаже. Если n – у > 0, то сначала опустимся на у этажей, а потом у — 1 раз поднимемся на 1 этаж и окажемся на (n — 1) – м этаже. Если n – у ≤ 0, то n < у + 1, поэтому можно, прибавляя по этажу, постепенно подняться до (у + 1) – го этажа, затем спуститься на у этажей до первого, а потом постепенно подняться на (n — 1) – й этаж. Аналогично доказывается и (3) ⇒ (2), что завершает доказательство равносильности всех трех утверждений.
Ответ. Все утверждения равносильны.
Задачи для самостоятельного решения