Логика для всех. От пиратов до мудрецов - Страница 34


К оглавлению

34

Ответ. Да, следует.

Занятие 3

3.5. Прав, если считать, что марсиан не существует: ведь любое утверждение обо всех элементах пустого множества истинно.

3.6. 1) Нельзя, так как сумма масс 1 + 2 +… + 30 = 31 × 15 – нечетное число. 2) Можно. Пример можно построить, например, так. Сначала сформируем пятнадцать пар гирек веса 31: 1 + 30, 2 + 29 и т. д. Затем возьмем в каждую из трех куч по пять любых пар.

3.7. 1) Предположим, что таблицу заполнить удалось. Если найти сумму чисел во всех строках, то она окажется четным числом, а если во всех столбцах – то нечетным. Но это одно и то же число.

Ответ. Нельзя.

2) Для приведения примера достаточно заполнить первую строку двойками, а остальные – единицами. Заметим, что если заполнить квадрат 3x3 как попало, а остальные числа ставить в соответствии с условием, пример не может не получиться!

Ответ. Можно.

3.8. Нет. Контрпример изображен на рис. 25.


Рис. 25


3.9. Нет. Контрпример: 2 + 15 = 128 + 15 = 143 = 11 · 13.

Комментарий. В настоящее время неизвестно ни одной формулы для вычисления простых чисел.

3.10. Приведем несколько из многих возможных примеров:

1) 1111111212 делится на 12, 1111111125 делится на 15, 1111111432 делится на 16.

2) 111… 1151121792 делится на 128 (все пропущенные цифры – единицы), 222… 22399925 делится на 225 (все пропущенные цифры – двойки).

Ответ. Да.

Комментарий. Для проверки примеров достаточно выполнить деление в столбик. А придумать их можно с помощью признаков делимости: для делимости на 12 надо обеспечить делимость на 3 и 4, для делимости на 15 – на 3 и 5, на 225 – на 9 и 25. Но при сумме цифр 12 или 15 число заведомо кратно 3, а при сумме цифр 225 – кратно 9. Поэтому достаточно с помощью последних цифр обеспечить делимость соответственно на 4, 5 и 25, а затем лишь подобрать нужную сумму цифр. Кроме того, признаки делимости на 2 и 4 можно обобщить: число делится на n-ю степень двойки тогда и только тогда, когда на нее делится число, составленное из n последних цифр исходного. В частности, делимость на 16 проверяется по четырем последним цифрам, а на 128 – по семи. Остальные цифры многозначного числа выбираем любые, лишь бы сумма их была соответственно 16 или 128. Предлагаем читателю самостоятельно составить стозначное число с суммой цифр 144, делящееся на 144.

3.11. 1) Высказывания Б, Г и Д равносильны. Они означают одно и то же: множества дедов и множество волшебников имеют хотя бы один общий элемент (см. рис. 26).


Рис. 26


2) Если А истинно, то истинны и высказывания Б, Г и Д (для них Дед Мороз является подтверждающим примером). А вот В может быть как истинным, так и ложным.

3.12. Подсказка. Верите ли вы в Деда Мороза?

Решение. Парадокс связан с различным пониманием высказывания «Дед Мороз – волшебник».

Первый вариант: существование Деда Мороза считается заранее известным, а в Б утверждается лишь, что он является волшебником. Тогда если верно В, то верно и Б, а если верно Б, то верно и А. В таком случае, действительно, если верно В, то верно и А, никакого контрпримера и противоречия здесь нет: раз мы договорились верить в существование Деда Мороза, то множество дедов не может быть пустым.

Второй вариант: заранее ничего не известно; в Б утверждается, что существует Дед Мороз, являющийся волшебником. Тогда если Б верно, то и А верно. Но утверждать, что если верно В, то верно и Б, нельзя (контрпримером является ситуация, когда множество дедов пусто), поэтому вывод «если верно В, то верно и А» делать тоже нельзя.

3.13. Обсуждение. Что останется, если убрать театрализацию? Утверждение «Если это утверждение истинно, то Дед Мороз существует». Истинно ли оно? Если да, то Дед Мороз существует. Но именно это в нем и сказано, то есть оно истинно. А раз оно истинно, то Дед Мороз существует.

Ответ. Проблема в том же месте, что и в задачах 1.4 и 1.10 первого занятия: классическая логика избегает утверждений, связанных с истинностью их самих: их нельзя считать ни истинными, ни ложными.

Занятие 4

4.7. Пригласят.

Комментарий. Изобразим ситуацию с помощью кругов Эйлера (см. рис. 27). Начертим два пересекающихся круга. В первый круг пригласим тех, кто хорошо поет, во второй – всех, кто хорошо танцует. В ансамбль пригласят тех, кто оказался хотя бы в одном из кругов (на рисунке эта область выделена серым), в том числе и Наташу, находящуюся в пересечении кругов.


Рис. 27


4.8. Предположим, Сеня говорит правду. Тогда, согласно его словам, три остальных гнома – вруны. И, тем самым, фраза Бени является правдой. Значит, предположение приводит к противоречию, поэтому Сеня – врун, и его утверждение, что Женя – врун, является ложным. Отсюда заключаем, что Женя говорит правду. Тем самым, Беня – врун, а Веня говорит правду.

Замечание. Фраза Сени «Да оба они вруны» (относительно Бени и Вени) является ложной (несмотря на то, что Беня действительно врун), поскольку Веня – не врун.

Ответ. Женя и Веня.

4.9. Чтобы Аня и Боря были довольны, в пицце должен быть ровно один из ингредиентов: либо помидоры, либо грибы. С учетом вкусов Вани это должны быть грибы.

Ответ. С грибами.

4.10. Решение 1. Верна ровно одна из двух первых подсказок. Поэтому третья и четвертая неверны. Приз в желтом ящике.

Решение 2. Рассмотрим 4 случая. Если приз в синем ящике, то верны подсказки 1 и 4. Если в зеленом – то 1, 3 и 4. Если в красном – то 2 и 4. Если в желтом – то только 2. Так как верна ровно одна подсказка, то приз находится в желтом ящике.

34