Ответ. Желтый.
4.11. Дед Мороз принес айфоны в квартиры, номера которых кратны 12. А шоколадки – в квартиры, номера которых при делении на 12 дают остатки 4, 6, 8 или делятся нацело. Так как 300 делится на 12 нацело, таких квартир ровно вчетверо больше.
Ответ. Шоколадок больше в 4 раза.
4.12. Д.
4.13. Если на первой табличке написана правда, то и вторая табличка тоже правдива. Но обе таблички одновременно правдивыми быть не могут. Поэтому правда написана на второй табличке, а на первой – ложь. Значит, в первой комнате находится тигр, а во второй – принцесса.
Ответ. Вторую.
4.14. Кто сидит в первой комнате? Если тигр, то утверждение на первой табличке истинно. Если принцесса, то истинно утверждение на второй табличке. Таким образом, ситуация, когда обе таблички лгут, исключена. Значит, на обеих написана правда. Из второй таблички следует, что в первой комнате сидит принцесса. Поэтому первая часть высказывания на первой табличке неверна, и все высказывание в целом истинно, только если и в другой комнате сидит принцесса.
Ответ. В любую.
4.15. Утверждение «В обеих комнатах находятся принцессы» либо истинно, либо ложно. Если истинно, то в соответствии со словами короля в левой комнате должна находиться принцесса, а в правой – тигр. Но это противоречит истинности утверждения про двух принцесс. Следовательно, оно ложно, и в соответствии со словами короля в левой комнате находится тигр, а в правой – принцесса.
Ответ. В правую комнату.
4.16. Решение 1. Рассмотрим высказывания Никиты и Глеба. Если они оба ложные, то высказывание Антона тоже ложно, а правы только Игорь и Дима. Это противоречит маминому знанию о том, что трое из ее сыновей всегда говорят правду. Если из этих высказываний ложно ровно одно, то ложны и высказывания Игоря и Димы, что также противоречит маминому знанию. Значит, истинны оба первых высказывания (а также и высказывание Димы). По словам Никиты пирог испек Глеб или Игорь. Но по словам Глеба он не пек пирог. Значит, это сделал Игорь.
Решение 2. Составим таблицу, озаглавив ее строки и столбцы первыми буквами имен мальчиков. Будем по очереди предполагать про каждого, что пирог испек именно он, и заполнять его столбец. Если при таком предположении высказывание кого-то из братьев оказывается истинным, ставим в его строке плюс, а если ложным, то минус. По условию задачи в столбце того мальчика, который испек пирог, должно быть не менее трех плюсов.
Пусть пирог испек Никита. Тогда Никита солгал (ставим минус в левой верхней клетке), Глеб сказал правду (ставим плюс на клетку ниже), Игорь солгал (ставим минус на клетку ниже), Антон сказал правду (ставим плюс), а Дима солгал (ставим минус).
Заполнив первый столбец, видим, что в этом случае трое братьев сказали неправду, чего быть не может. Считая, что пирог испек Глеб, заполним второй столбец и т. д.
Теперь видно, что пирог испек Игорь.
Ответ. Игорь.
4.17. Решение. Если Маша говорит правду, то Наташа и Гриша умеют сидеть на стуле, поэтому Саша лжет. При этом лгут и Гриша с Наташей, а всего лгут трое.
Если Маша лжет, то Саша может как лгать, так и говорить правду. В первом случае Наташа говорит правду, а Гриша лжет, всего лгут трое. Во втором случае Наташа лжет, лжет и Гриша, и всего снова трое лжецов.
Ответ. Один.
Комментарий. В этой задаче нельзя определить ни кто именно сказал правду, ни кто из детей на самом деле умеет сидеть на стуле. Ясно только, что Гриша солгал.
4.18. Из условия следует, что первым ходил Петя, вторым Вася, а пятой Таня. И что до того, как Таня назвала 15 (вылетев из игры), ни она, ни Петя, ни Вася не ошибались. Предположим, что третий игрок назвал число 3 и вылетел из игры. Тогда 6 досталось Пете (и он сказал «Хоп!»), 9 – Тане (она тоже сказала «Хоп!»), 13 – тоже Тане, но тогда она не могла назвать еще и 15.
Значит, вместо числа 3 игрок сказал «Хоп!», и на первом круге (от 1 до 5) никто не вышел из игры. Поэтому на втором круге очередность ходов не изменилась, и Тане досталось число 10. Если бы четвертый игрок назвал число 9 и вылетел из игры, очередность на третьем круге нарушилась бы, и число 15 не досталось бы Тане. Так как Таня назвала 15, на втором круге (от 6 до 10) снова никто не вылетел. Если бы и от 11 до 14 никто не ошибся, то 20 должен был бы назвать вместо вышедшей из игры Тани Петя, начинавший игру. Но 20 сказал Вася. Кто мог ошибиться, назвав число между 11 и 14? Не Вася, который вместо 12 сказал «Хоп!», а третий игрок, назвавший 13.
Таня и третий игрок вышли. Петя и Вася назвали 16 и 17. Говорить «Хоп!» вместо 18 полагалось четвертому игроку. Если бы он так и сделал, к числу 23 подошла бы Васина очередь. Но это число досталось Пете. Почему? Потому что четвертый игрок назвал 18 и вылетел из игры. Остались Петя с Васей. Когда Петя назвал 23, Вася стал победителем. Он успел сказать «Хоп!» только один раз, вместо числа 12.
Ответ. 1 раз.
5.7. 1) Верно. 2) Обратное высказывание «Если Боря – Женин брат, то Женя – Борин брат» неверно: Женя может быть Бориной сестрой.
5.8. С точки зрения логики правила можно рассматривать как высказывания «А ⇒ Б». Нарушение правила означает ложность этого высказывания. В данном правиле А означает «Житель планеты увидел старшего по рангу». В первых трех случаях А ложно, поэтому высказывание «А ⇒ Б» заведомо истинно. В четвертом случае истинны и А, и Б. А вот в пятом А истинно, а Б ложно.