Логика для всех. От пиратов до мудрецов - Страница 48


К оглавлению

48

2) Сумма двух четных чисел – четное число.

3) Прямоугольник размером 20 х 15 можно разрезать на прямоугольники размером 3x5.

4) Квадрат размером 2015 х 2015 можно разрезать на прямоугольники размером 20 х 15.

5) В нашей школе найдутся два ученика, имеющие одинаковое число друзей среди учеников нашей школы.

6) * Через отверстие, прорезанное в листке из школьной тетради, человек пролезть не может.

Занятие 2. Урок русского языка, или «Все», «некоторые» и отрицание

Задача 1. 1) Серый Волк заинтересовался цветом шапочек. Однажды он встретил Красную Шапочку. Помогите Волку сделать правильный вывод. Придумайте несколько вариантов.

2) Выразите другими словами мысль «Все шапочки красные».

Задача 2. Вася говорит, что слова «для всех» и «для каждого» означают одно и то же. Прав ли Вася?

Задача 3. 1) Означают ли одно и то же высказывания: «Некоторые сантехники любят рэп» и «Некоторые любители рэпа – сантехники»?

2) Означают ли одно и то же высказывания: «Все сантехники любят рэп» и «Все любители рэпа – сантехники»?

Задача 4. Лжец сказал: «В этой корзине все грибы съедобны». Значит ли это, что все грибы в этой корзине ядовиты? (Для простоты забудем об условно съедобных грибах и будем каждый гриб считать либо съедобным, либо ядовитым.)

Задача 5. Рассмотрим два утверждения. Сколько из них могут быть верными?

1) В этой корзине все грибы съедобные.

2) В этой корзине есть хотя бы один ядовитый гриб.

Задача 6. Лжец сказал: «В этой корзине некоторые грибы ядовитые». Что можно узнать из этого высказывания?

Задача 7. Дано утверждение: «Все малышки хорошо поют». Незнайка сформулировал к нему отрицание: «Все малышки поют отвратительно».

1) Как с помощью закона исключенного третьего убедить Незнайку, что он ошибся?

2) Сформулируйте отрицание правильно.

Задача 8. Постройте отрицания к каждому утверждению, не используя частицу «не». Где сможете, укажите, что верно: утверждение или его отрицание. Где сможете, обоснуйте свое мнение примером или контрпримером.

1) На Земле существует хотя бы одна гора выше 10000 м над уровнем моря.

2) Существует хотя бы один вулкан с высотой более 10000 м относительно своего основания.

3) Любой жук помещается в спичечном коробке.

4) Некоторые горные реки быстрые.

5) Бутерброд всегда падает маслом вниз.

Задача 9. Рассмотрим два утверждения:

А: В этой корзине все грибы съедобные.

Б: В этой корзине есть хотя бы один съедобный гриб.

Могут ли быть верными: 1) оба утверждения; 2) ровно одно из них;

3) ни одного?

Задача 10. Является ли высказывание «В этой корзине некоторые грибы съедобные» отрицанием высказывания «В этой корзине некоторые грибы ядовитые»?

Задача 11. Нарисуйте с помощью кругов Эйлера иллюстрацию к каждому высказыванию. Есть ли среди иллюстраций одинаковые? Одинаков ли смысл соответствующих высказываний?

1. Все хоббиты живут в норах.

2. Все жители нор – хоббиты.

3. Некоторые кошки серые.

4. Некоторые серые существа – кошки.

Задача 12. Когда учительница ругала Дениса за плохой почерк, он сказал: «У всех великих людей был плохой почерк, значит, я великий человек». Прав ли он?

Задача 13. Шерлок Холмс допросил Зайца, Волка и Лису по делу о съедении Колобка. Подозреваемые заявили:

Заяц: «Хотя бы один из нас съел Колобка».

Волк: «Хотя бы один из нас не ел Колобка».

Лиса: «Хотя бы один из нас сказал правду».

Как известно, Колобка съела Лиса. Кто сказал правду, а кто солгал?

Задача 14. Комиссия посетила больницу и составила отчет, в котором не было ни одного правдивого утверждения.

«Все врачи имеют достаточный опыт. Некоторые врачи никогда еще не ставили неправильного диагноза. Никто из врачей не опаздывает на работу. Все пациенты довольны лечением. Ни один из них не жалуется на бытовые условия. Некоторые пациенты выздоравливают за один день».

Напишите, как выглядел бы честный отчет.

Задача 15. В комнате собрались несколько жителей острова рыцарей и лжецов. Трое из них сказали следующее:

– Нас тут не больше трех человек. Все мы лжецы.

– Нас тут не больше четырех человек. Не все мы лжецы.

– Нас тут пятеро. Лжецов среди нас не меньше трех.

Сколько в комнате человек и сколько из них лжецов?

Задача 16. Предположим, что справедливы следующие утверждения:

• Среди людей, имеющих телевизоры, не все являются малярами.

• Люди, каждый день купающиеся в бассейне, но не являющиеся малярами, не имеют телевизоров.

Следует ли отсюда, что не все владельцы телевизоров каждый день купаются в бассейне?

Занятие 3. Вдоль по Африке, или Примеры для некоторых и контрпримеры для всех

Задача 1. Определите, какие из утверждений верны. Где можно, подтвердите свой ответ примером (контрпримером). В остальных случаях обоснуйте его по-другому.

1. Все нечетные числа простые.

2. Все простые числа нечетные.

3. Некоторые нечетные числа простые.

4. Некоторые простые числа нечетные.

5. Все четные числа составные.

6. Все числа вида р + 7, где р – простое, являются составными.

Задача 2. Верно ли высказывание: «Любое нечетное число, большее

5, можно представить в виде суммы трех простых чисел»?

Задача 3*. Верно ли утверждение: «Все дожившие до наших дней тираннозавры умеют вышивать крестиком»?

Задача 4*. Рассмотрим два высказывания:

А: Некоторым Мишиным одноклассникам 12 лет.

Б: Всем Мишиным одноклассникам 12 лет.

Можно ли, ничего не зная про Мишу, утверждать, что:

1) если верно А, то верно и Б;

48