Логика для всех. От пиратов до мудрецов - Страница 49


К оглавлению

49

2) если верно Б, то верно и А?

Задача 5. Землянин Вася сказал: «Все марсиане лжецы». Прав ли Вася?

Задача 6. Есть 30 гирек, которые весят 1 г, 2 г, 3 г…, 30 г. Можно ли разложить их: 1) на две кучки одинакового веса; 2) на три кучки одинакового веса?

Задача 7. 1) Можно ли заполнить таблицу 3x3 натуральными числами так, чтобы сумма чисел в каждой строке была четным числом, а в каждом столбце – нечетным? 2) А таблицу 4x4?

Задача 8. Верно ли, что периметр любого четырехугольника, целиком находящегося внутри данного квадрата, меньше периметра этого квадрата?

Задача 9. Верно ли, что все числа вида 2 + 15, где n – натуральное число, простые?

Задача 10. Рассмотрим натуральные числа, в записи которых нет нулей.

1) Найдется ли среди них десятизначное число, делящееся на сумму своих цифр?

2) А стозначное?

Задача 11.1) Какие из высказываний А – Д означают одно и то же?

2) Будем считать высказывание А истинным. Какие из других высказываний в таком случае наверняка истинны?

А: Дед Мороз – волшебник.

Б: Существует хотя бы один дед-волшебник.

В: Существует ровно один дед-волшебник.

Г: Некоторые деды – волшебники.

Д: Некоторые волшебники – деды.

Задача 12*. Найдите ошибку в рассуждениях.

«Рассмотрим три высказывания:

А: Существует хотя бы один дед-волшебник.

Б: Дед Мороз – волшебник.

В: Все деды – волшебники.

Можно ли утверждать, что если верно В, то верно и А? Нет: контрпримером является ситуация, когда множество дедов пусто (аналогично задаче про Мишиных одноклассников).

С другой стороны, если верно В, то верно и Б (иначе Дед Мороз служил бы контрпримером к высказыванию В). Но если верно Б, то верно и А (для доказательства существования достаточно привести пример, в данном случае Дед Мороз – пример). Итак, если верно В, то верно и А».

Задача 13*. Прокомментируйте доказательство существования Деда Мороза, изложенное в виде диалога двух логиков.

Первый: «Если я не ошибаюсь, Дед Мороз существует».

Второй: «Разумеется, Дед Мороз существует, если вы не ошибаетесь».

Первый: «Следовательно, мое утверждение истинно».

Второй: «Разумеется!»

Первый: «Итак, я не ошибся, а вы согласились с тем, что если я не ошибаюсь, то Дед Мороз существует. Следовательно, Дед Мороз существует».

Занятие 4. Пиратская логика, или Высказывания с союзами «и», «или»

Задача 1. Чтобы найти клад, надо пройти от старой пальмы 100 футов на восток, потом 100 футов на север. Четыре пирата высказались про место расположения клада.

Арчи: от пальмы 30 футов на восток, потом 120 футов на север;

Бен: от пальмы 100 футов на восток, потом 120 футов на север;

Вилли: от пальмы 30 футов на восток, потом 100 футов на север;

Глен: от пальмы 100 футов на восток, потом 100 футов на север.

Подберите подходящую строку в таблице истинности для высказываний каждого из 4 пиратов.

Задача 2. Какие из следующих высказываний истинны, а какие ложны?

1) Утка умеет плавать и летать.

2) Курица умеет плавать и летать.

3) Камбала умеет плавать и летать.

Задача 3. Какие из следующих шести высказываний истинны, а какие ложны?

1) Береза – это куст или дерево. Береза – это либо куст, либо дерево.

2) Собака – животное или камбала – рыба. Либо собака – животное, либо камбала – рыба.

3) Собака – это птица или рыба. Собака – это либо птица, либо рыба.

Задача 4. 1) В сказке Ганса Христиана Андерсена «Новое платье короля» обманщики пообещали, что «платье… обладает чудесным свойством становиться невидимым для всякого человека, который не на своем месте сидит или непроходимо глуп». Изобразите с помощью кругов Эйлера тех, для кого платье должно стать невидимым.

2) Вот отрывок из «Песни ткачей» Владимира Васильева:


Мы не напрасно взялись ткать,
Чтоб мог народ, в конце концов,
О короле сказать:
«Либо он дурак – либо не на месте,
Либо не на месте – либо он дурак,
Либо он дурак – либо не на месте,
Либо не на месте и дурак!»

Представим, что три представителя народа высказались о короле. Первый: «Либо он дурак – либо не на месте»; второй: «Либо не на месте – либо он дурак»; третий: «Либо он дурак, либо не на месте, либо не на месте и дурак». Одинаков ли смысл трех высказываний? Какое из них наиболее точно соответствует сказке?

Задача 5. Постройте отрицания к высказываниям пиратов из задачи 1. Какие из этих отрицаний истинны?

Задача 6. Замените высказывания на противоположные:

1) Но с ветром худо и в трюме течи.

2) Ни Бог, ни дьявол не помогут ему спасти свои суда.

3) Случился штиль иль просто ветер встречный.

4) Вода и ветер сегодня злы, и зол, как черт, капитан.

Задача 7. В ансамбль приглашают всех, кто хорошо поет или танцует. Наташа хорошо и поет, и танцует. Пригласят ли ее в ансамбль?

Задача 8. Каждый из четырех гномов: Беня, Сеня, Веня и Женя – либо всегда говорит правду, либо всегда врет. Мы услышали такой разговор:

Беня – Вене: «Ты врун».

Женя – Бене: «Сам ты врун!»

Сеня – Жене: «Да оба они вруны!» Подумав, он добавил: «Впрочем, ты тоже».

Кто из гномов говорит правду?

Задача 9. Математик с тремя детьми пришел в пиццерию.

– Хочу, чтобы в пицце были помидоры или грибы, – потребовала Аня.

– Пиццу с помидорами и грибами я есть не буду, – заявил Боря.

– Если будут помидоры, а грибов не будет, то я не буду есть, – добавил Ваня.

– Отлично! – воскликнул математик. – Сделайте нам, пожалуйста, пиццу с…

Так какую же пиццу заказал математик, чтобы все дети ее ели?

Задача 10. Андрей является участником шоу-викторины. Главный приз спрятан в одном из ящиков. Андрей получает 4 подсказки:

49