1. Приз находится в синем или зеленом ящике.
2. Приз находится в красном или желтом ящике.
3. Приз находится в зеленом ящике.
4. В желтом ящике приза нет.
Три подсказки ошибочны и только одна правильная. Андрей поразмыслил и открыл правильный ящик. Ящик какого цвета он выбрал?
Задача 11. В доме 300 квартир. В квартиры, номера которых кратны 4 или 6, Дед Мороз принес шоколадку. А в квартиры, номера которых кратны 4 и 6, – айфон. Чего Дед Мороз принес в дом больше – айфонов или шоколадок? Во сколько раз?
Задача 12. Зайчишка-хвастунишка залез на пенек и громко закричал: «Во всем лесу нет никого меня смелее, нет никого меня умнее!». Он, конечно же, соврал. Какой из пяти выводов можно сделать?
(A) Все в лесу умнее и смелее его.
(Б) В лесу есть кто-то и умнее его, и смелее.
(B) В лесу есть кто-то его умнее.
(Г) В лесу есть кто-то его смелее.
(Д) В лесу есть кто-то умнее или смелее его.
Задача 13. Король подвел узника к двум дверям, ведущим в две комнаты. В каждой из них может находиться принцесса или тигр. При этом не исключено, что в обеих комнатах находятся принцессы или в обеих – тигры. Узник должен войти в одну из комнат. Если там окажется принцесса, то узник женится на ней. Если тигр – то он растерзает узника. На дверях висят таблички с надписями:
Король любезно сообщил, что на одной из табличек написана правда, а на другой – нет. Какую комнату вы посоветуете выбрать?
Задача 14. Другого узника ожидало похожее испытание. Но на этот раз король сказал, что утверждения на обеих табличках одновременно либо истинны, либо ложны. А написано было вот что:
Задача 15. Для третьего узника король повесил на обе двери одинаковые таблички:
А сказал так: «Если в левой комнате находится принцесса, то утверждение на табличке истинно, если же тигр, то ложно. В правой же комнате все наоборот: утверждение ложно, если там находится принцесса и истинно, если тигр». Куда лучше идти узнику?
Задача 16. Один из пяти братьев испек маме пирог.
Никита сказал: «Это Глеб или Игорь».
Глеб сказал: «Это сделал не я и не Дима».
Игорь сказал: «Вы оба шутите».
Антон сказал: «Нет, один из них сказал правду, а другой обманул».
Дима сказал: «Нет, Антон, ты не прав».
Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог?
Задача 17. Четверо детей сказали друг о друге так:
Маша: «Саша, Наташа и Гриша умеют сидеть на стуле».
Саша: «Маша, Наташа и Гриша не умеют сидеть на стуле».
Наташа: «Маша и Саша солгали».
Гриша: «Маша, Саша и Наташа сказали правду».
Сколько детей на самом деле сказали правду?
Задача 18. «Хоп!» – это игра на внимательность. Игроки по очереди называют натуральные числа в порядке возрастания. Если число кратно 3 или содержит в записи цифру 3, то вместо него надо сказать «Хоп!». Если не ошибаться, получится ряд: 1, 2, хоп, 4, 5, хоп, 7, 8, хоп, 11, хоп, хоп, 14 и т. д. Кто по ошибке назовет запрещенное число, выходит из круга. Побеждает последний оставшийся игрок.
Пять ребят играли в «Хоп!». Известно, что числа 1 и 23 назвал Петя, 2 и 20 – Вася, а 5 и 15 – Таня. Сколько раз победитель сказал «Хоп!»?
Задача 1. Перед перекрестком папа остановил машину. «У нас мотор сломался!» – испуганно закричал Ваня. «С чего ты взял?» – удивился папа. «Но ты же сам говорил, что если мотор сломался, то машина не едет», – объяснил Ваня. Правильно ли он рассуждал?
Задача 2. Постройте высказывание, обратное данному. Истинно ли данное высказывание? А обратное ему?
1) Если последняя цифра натурального числа – 0, 2, 4, 6 или 8, то оно четное.
2) Если натуральное число делится на 6, то оно четное.
3) Если натуральное число делится на 3, то оно делится и на 5.
Задача 3. «Вырежем» из составного высказывания задачи 5.2 (п. 2)
простые высказывания. А: «Число делится на 6», Б: «Число четное». Как мы убедились, для них высказывание «А ⇒ Б» истинно, а обратное ему высказывание «Б ⇒ А» – ложно. Приведите другие примеры высказываний А и Б с тем же свойством.
Задача 4. Будем считать истинной пословицу «Кто не работает, тот и не ест».
1) Известно, что Иван ест. Обязательно ли он работает?
2) Известно, что Семен работает. Обязательно ли он ест?
Задача 5. Верно ли высказывание «Если человек допрыгнет с Земли до Луны, то он сможет там дышать»?
Задача 6. 1) Сформулируйте высказывание, начинающееся со слова «все», имеющее тот же смысл, что высказывание «Если человек допрыгнет с Земли до Луны, то он сможет там дышать».
2) Сформулируйте высказывание с союзом «если… то», имеющее тот же смысл, что высказывание «Все дожившие до наших дней тираннозавры умеют вышивать крестиком».
Задача 7. 1) Верно ли, что если Женя – Борин брат, то Боря – Женин брат?
2) Составьте обратное высказывание. Верно ли оно?
Задача 8. На планете Плюк действует правило: увидев чатланина, житель планеты должен сказать «Ку». В суд поступили дела пяти обвиняемых в нарушении этого правила:
1) Первый сказал «Ку» облезлой кошке.
2) Землянин Второй ничего не сказал при встрече с главным чатланином.
3) Часовой Третий спал на посту, не заметил подошедшего чатланина и ничего ему не сказал.
4) Четвертый сказал чатланину: «Ку. Как противно приветствовать такого мерзавца!»