Логика для всех. От пиратов до мудрецов - Страница 15


К оглавлению

15

Рис. 11


В первой задаче мы считали исходные утверждения истинными, поэтому могли полагаться не только на формальные рассуждения и их графические иллюстрации, но и на здравый смысл. Попробуем теперь поиграть в игру с необычными правилами. Не будем бояться неверных утверждений. Более того, вообще не будем интересоваться истинностью высказываний. Несмотря на это, постараемся разобраться, насколько логичны переходы от одних высказываний к другим. Помогут нам в этом круги Эйлера, а в случае неверных выводов еще и контрпримеры.

Задача 6.2. Все вороны собирают картины. Некоторые вороны сидят в птичьей клетке. Следует ли из этого, что некоторые собиратели картин сидят в птичьей клетке?

Ответ. Да.

Решение. Сначала нарисуем, что все вороны собирают картины (рис. 12). Теперь нарисуем, что некоторые вороны сидят в птичьей клетке (рис. 13). Тут возможны две ситуации, но в любом случае существует ворона, собирающая картины и сидящая в птичьей клетке.


Рис. 12


Рис. 13


Задача 6.3. Все вороны собирают картины. Некоторые собиратели картин сидят в птичьей клетке. Следует ли из этого, что некоторые вороны сидят в птичьей клетке?

Ответ. Нет.

Решение 1. То, что все вороны собирают картины, выглядит так же, как и в предыдущей задаче. По условию круг собирателей картин пересекается с кругом сидящих в птичьей клетке. А вот пересекается ли он с кругом ворон – неизвестно (см. рис. 14).


Рис. 14


Решение 2. Приведем контрпример. Пусть есть всего одна ворона А. Она собирает картины, но не сидит в клетке. Еще есть попугай В, который собирает картины и сидит в птичьей клетке. Тогда оба условия выполнены, но никакая ворона не сидит в птичьей клетке.

Замечание. Конечно, с точки зрения здравого смысла приведенный пример абсурден – но не более, чем условие задачи. Логика лишь учит нас правильно делать выводы из исходных утверждений. Ничего удивительного нет в том, что из странных утверждений получаются странные выводы.

До сих пор мы обсуждали только утвердительные высказывания. Чтобы делать выводы из отрицательных высказываний, иногда проще всего заменить их на утвердительные высказывания того же смысла. Например, вместо высказывания «Ни одно доброе дело не остается безнаказанным» можно рассматривать такое: «За любое доброе дело наказывают». Но можно нарисовать и исходное высказывание (рис. 15).


Рис. 15


Задача 6.4. Ни одна кочерга не мягкая. Все подушки мягкие. Какой можно сделать вывод?

Решение. Нарисовав высказывания, видим, что никакой предмет не является кочергой и подушкой одновременно. Сформулировать это можно двумя способами: «Ни одна кочерга не является подушкой» или «Ни одна подушка не является кочергой» (рис. 16).


Рис. 16


Зачем математику уметь работать с абсурдными утверждениями? В естественно возникающих задачах вряд ли могут встретиться вороны, собирающие картины. Однако с посылками сомнительной истинности приходится сталкиваться постоянно. И бывает полезно заранее понять, имеет ли смысл их доказывать или опровергать. Скажем, в условии задачи дано А и требуется определить, верно ли В. Пусть нам ясно, что В следует из Б, но неизвестно, верно ли Б. Стоит ли пытаться вывести Б из А? Да, стоит: если А ⇒ Б, то В верно. Но если окажется, что Б не следует из А, то никакого вывода об истинности В сделать пока не удастся. Рассмотрим пример подобных рассуждений.

Задача 6.5. Является ли точным квадратом число:

а) 1234567; б) 10101… 01 (всего 2015 единиц и 2014 нулей); в) 20122013201420152016?

Ответ, а), б), в) Нет.

Решение, а) Ни одно натуральное число, оканчивающееся на 7, не является квадратом натурального числа. Число 1234567 оканчивается на 7. Следовательно, оно не является квадратом.

Комментарий. Логически решение безупречно, но верно оно, только если верны обе посылки. Истинность второй не вызывает сомнений. Чтобы убедиться в истинности первой, достаточно поочередно возвести в квадрат все однозначные числа. А то, что последняя цифра числа полностью определяет последнюю цифру его квадрата, ясно каждому, кто умеет умножать в столбик.

б) Попробуем действовать так же и подумаем, верно ли высказывание: «Ни одно натуральное число, оканчивающееся на 1, не является точным квадратом». К сожалению, неверно. Контрпримерами служат, в частности, 1 и 81. К еще большему сожалению, из этого нельзя сделать никакого вывода, кроме того, что надо решать задачу по-другому. Рассмотрение двух последних цифр столь же бесполезно, квадрат числа вполне может оканчиваться на 01, например, 101 = 10201. Но что такое последняя цифра? Остаток от деления на 10 (а две последние цифры – от деления на 100). Рассматривая остатки от деления на 3, приходим к такому короткому решению:

Сумма цифр данного числа равна 2015, поэтому оно дает остаток 2 при делении на 3. Но квадраты всех натуральных чисел делятся на 3 либо без остатка, либо с остатком 1. Значит, данное число не является точным квадратом.

в) В этом числе сумма цифр сразу не видна, но ее можно вычислить. Прежде чем вычислять, подумаем, зачем это надо. Если она делится на 3 с остатком 2, то схема решения та же, что и в предыдущем пункте. Нетрудно убедиться, что так оно и есть; точно вычислять сумму необязательно.

15