Задачи для самостоятельного решения
Задача 6.6. Каждый англичанин любит играть в гольф. Майкл любит играть в гольф. Можно ли наверняка утверждать, что он англичанин?
Задача 6.7. Докажите с помощью контрпримера, что вывод сделан неверно.
1) Все мои друзья – болельщики «Спартака». А некоторые болельщики «Спартака» занимаются спортом. Следовательно, некоторые мои друзья занимаются спортом.
2) Некоторые кочаны капусты – паровозы. Некоторые паровозы играют на рояле. Значит, некоторые кочаны капусты играют на рояле.
Задача 6.8. Покажите с помощью рисунка, что рассуждение верное.
1) Все крокодилы умеют летать. Все великаны являются крокодилами. Значит, все великаны могут летать.
2) Некоторые сны ужасны. Ни один ягненок не способен вызвать ужас. Следовательно, некоторые сны не ягнята.
Задача 6.9. Определите, какие из приведенных рассуждений истинны, а какие ложны.
1) Все англичане любят пудинг. Ни один француз не любит пудинг. Следовательно, ни один француз не англичанин.
2) Ни один лентяй не достоин славы. Некоторые художники – не лентяи. Следовательно, некоторые художники достойны славы.
Задача 6.10. Сделайте вывод, если это возможно:
1) Сахар сладкий. Некоторые сладкие вещи очень нравятся детям.
2) Некоторые горные кручи непреодолимы. Все заборы вполне преодолимы.
3) Гусеницы не отличаются красноречием. Джон красноречив.
4) Все шутки придуманы для того, чтобы смешить людей. Ни один закон не шутка.
5) Музыка, которую слышно, вызывает колебания воздуха. Музыка, которую не слышно, не стоит того, чтобы за нее платили деньги.
Задача 6.11. Придумайте свои примеры верных и неверных рассуждений про всех и некоторых.
Задача 6.12. В следующем рассуждении истинность исходных высказываний не вызывает сомнения. Верен ли вывод? Почему?
Все сочинения Пушкина нельзя прочитать за одну ночь. «Сказка о рыбаке и рыбке» – сочинение Пушкина. Следовательно, «Сказку о рыбаке и рыбке» нельзя прочитать за одну ночь.
Этого не может быть никогда, потому что если бы люди жили на луне, то заслоняли бы для нас магический и волшебный свет ее своими домами и тучными пастбищами.
А. П. Чехов. «Письмо к ученому соседу»
С методом доказательства от противного каждый школьник неизбежно сталкивается (неожиданно, и поэтому, порой, жестко) на уроках геометрии. Надеемся, что ученик, разобравшийся с материалом предыдущих занятий, воспримет метод от противного как естественное продолжение знакомства с логикой и будет избавлен от неуместных формальных трудностей при изучении геометрии.
Задача 7.1 служит вводным упражнением, показывающим логическую основу метода от противного. С формальной точки зрения он состоит в замене доказательства того, что из А следует Б, на доказательство того, что из «не Б» следует «не А». Как показывает задача 7.2, иногда такой простой трюк существенно облегчает задачу.
Однако настоящая мощь метода от противного проявляется при более широком его понимании. Пусть дано А, а доказать требуется Б. Предположив противное, мы получим уже два условия: А и «не Б», а с двумя условиями работать легче, чем с одним. Из них требуется получить два любых противоречащих друг другу высказывания: В и «не В». Задачи 7.2, 7.3 и 7.4 демонстрируют, что В может как совпадать с одним из условий А или Б, так и быть новым утверждением.
Иногда метод от противного удается применить при решении задач, в формулировке которых условия А и Б явно не выделены (см. задачу 7.6 и комментарий к ней). Достаточно усвоить идею «Предположим противное и поищем противоречие».
Задача на доказательство не всегда содержит слово «докажите». Иногда решающий должен сам выбрать верный ответ на вопрос типа «Можно ли…», «Существует ли…» ит. п., а потом доказать правильность ответа. Если ответ отрицательный, часто бывает удобно предположить, что он положительный, а затем прийти к противоречию. Такое рассуждение от противного применяется в задачах 7.6 и 7.11, а также ДЗЗ и Д36.
Немного рекламы.
1) Доказательство от противного порадует любителей перебора: мы просто рассматриваем все случаи (часто их всего два, но может быть и больше), исключаем приводящие к противоречию и делаем вывод, какой из случаев выполняется.
2) «Противное» часто оказывается хорошим. От противного удобно доказывать «отрицательные» качества: неделимость, иррациональность, бесконечность. А предположив противное, мы сразу получим что-то хорошее, с дополнительными свойствами (делимость на простое число, числитель и знаменатель рациональной дроби, размер конечного множества).
3) Метод от противного не помешает даже там, где он не нужен. Пусть дано А, и из этого без всякого «противного» можно доказать Б. Но мы этого не заметили и зачем-то предположили «не Б». И только после этого из А (без использования «не Б») получили Б. Вот и хорошо! Б и «не Б» противоречат друг другу, метод от противного сработал.
А теперь антиреклама.
1) Если метод от противного сработал описанным только что образом, самое время упростить доказательство и выбросить из него «противную» оболочку.
2) Недостаток логической культуры может привести к некорректному «доказательству» от противного. Одна из целей этого занятия, да и всей книжки – научить, как таких ошибок избегать. В частности, задача 7.5 еще раз напоминает о неравносильности обратных друг другу высказываний.